
1

Rapid Evaluation of Instantiations of Embedded Systems
Architectures: a Case Study

Frank Terpstra Simon Polstra Andy Pimentel Bob Hertzberger

Department of Computer Science
University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam�
ftrpstra,spolstra,andy,bob � @science.uva.nl

Abstract—Modern signal processing and multimedia em-
bedded systems increasingly have heterogeneous system
architectures. In these systems, programmable processors
provide flexibility to support multiple applications, while
dedicated hardware blocks provide high performance for
time-critical application tasks. The heterogeneity of these
embedded systems and the varying demands of their grow-
ing number of target applications greatly complicate the sys-
tem design. For this reason, the design of these embedded
systems should be supported by tools which facilitate effi-
cient design space exploration.

As part of the Artemis project, we are developing the
Sesame modeling and simulation environment which ad-
dresses the design space exploration of heterogeneous em-
bedded systems architectures. Sesame aims at supporting
the rapid evaluation of instantiations of embedded systems
architectures at multiple levels of abstraction. In this paper,
we present an overview of the current status of Sesame by
using an illustrative case study of a modified M-JPEG appli-
cation.

Keywords—Media and signal processing, system architec-
ture design, design space exploration, computer architecture
modeling and simulation

I. INTRODUCTION

Modern embedded systems, such as those used for
multi-media and signal processing, are becoming increas-
ingly complex. These systems need to support multiple ap-
plications and different standards for communication and
coding of digital content. They also have to be flexible so
that they can easily support new standards and applications
in the future. In the case of mobile devices this also has
to be achieved with only limited power consumption. This
means that modern embedded systems have programmable
microprocessors which provide flexibility allowing multi-
ple applications to run on one system. In addition, they
also have dedicated hardware to save power, or to give time
critical tasks the high performance they demand. These
systems are called heterogeneous because they use both
dedicated and programmable hardware. Within the scope
of the Artemis project [1], we aim at reducing the de-

sign time of heterogeneous embedded media systems. One
of the goals of the Artemis project is to create a model-
ing and simulation environment for efficient design space
exploration of architectures for these embedded systems.
The requirements for efficient design space exploration are
twofold. Firstly, the ability to quickly evaluate the perfor-
mance impact of the following design issues for a wide
range of (media) applications:

� new architecture designs� application to architecture mappings, i.e., which applica-
tion tasks are mapped onto which architecture components� different hardware/software partitionings, i.e., which ap-
plication tasks are implemented by software and which
ones are implemented by hardware

Secondly, design space exploration should allow for
simulation at multiple levels of abstraction. This enables a
stepwise refinement approach. Abstract simulation models
are used for the efficient exploration of large design spaces
early on in the design process, while more detailed models
are used for more focused exploration in the later stages.

Within the Artemis project there are two prototype mod-
eling and simulation frameworks: Spade (System-level
Performance Analysis and Design space Exploration) [2]
and Sesame (Simulation of Embedded System Architec-
tures for Multi-level Exploration) [3]. In [4], the authors
demonstrated, by means of the Spade environment, that
the modeling and simulation methodology of Artemis fa-
cilitates efficient evaluation of different application to ar-
chitecture mappings and hardware/software partitionings.
In this paper, we use the Sesame environment to show the
capability of quickly evaluating different architecture de-
signs. To this end, we studied a modified M-JPEG ap-
plication for which we evaluated multi-processor architec-
tures with different communication interconnects. This
case study was restricted to a single (high) level of ab-
straction, as the support for multiple levels of abstraction
in Sesame is still planned as future work.

The paper is organized as follows. First we briefly de-
scribe the Sesame modeling and simulation environment

2

and how it achieves a high degree of flexibility. Section III
gives a detailed description of our M-JPEG case study. In
Section IV we describe our modifications to the M-JPEG
target architecture. Finally, we will discuss the results and
give our conclusions.

II. SESAME

The Sesame modeling and simulation environment is an
architecture exploration tool with which architectural de-
sign choices can be explored in an efficient and flexible
manner. It should be used alongside a design tool, as a re-
search vehicle to rapidly investigate the design choices and
for the designer to gain insight into architectures.

Sesame does not perform traditional hardware/software
co-simulation [5] in which the software and hardware parts
of an embedded system are simulated together in one sim-
ulation (illustrated in Figure 1a). The reason for not using
such co-simulation is that it forces the designer to make
decisions about software/hardware partitioning before the
simulation models are build. Evidently, this significantly
hampers the evaluation of different hardware/software par-
titionings, since a new system model is required for the
assessment of every partitioning. Instead, Sesame en-
forces a separate application model and architecture model
(shown in Figure 1b). The application model describes
the functional behavior of an application in an architec-
ture independent manner. It generates traces of events
that represent the application workload imposed on the
architecture. These traces of application events drive the
simulation of the underlying architecture model. Sub-
sequently, the architecture model accounts for the archi-
tectural performance constraints and simulates the perfor-
mance consequences of the events generated by the appli-
cation model. By varying the latency associated with an
application event, one can simulate hardware or software
execution of that event. This allows us to rapidly exper-
iment with different hardware/software partitionings. Es-
sential in this approach is that an application model is as
independent from an architecture model as possible so that
it can easily be co-simulated with alternative architecture
models, either modeling different architectures or the same
architecture at different abstraction levels.

Because we separate application and architecture mod-
els the traces generated by the application model have to
be explicitly mapped onto the components of the architec-
ture model. This mapping can be changed easily allowing
for evaluation of different application to architecture map-
pings (see also section III-B).

Application and architecture modeling will be briefly
discussed in the following sections. For a complete de-
scription we refer to [6].

events

model

reconf./dedicated HW)
(Programmable +
Architecture modelmodel

Application model

Dedicated HWProgrammable HW

Software model

(a) (b)

Computational &
communication

Fig. 1. Traditional co-simulation (A). The Artemis methodol-
ogy: separate application and architecture models (B).

A. Application modeling

Application modeling uses the Kahn Process Net-
work [7] model of computation. This model consists of
parallel processes communicating via unbounded FIFO
channels. In this model reading from channels is done in a
blocking manner while writing is non-blocking. The rea-
son for using Kahn Process Networks is that they fit nicely
with signal processing and multi-media applications and
that they are deterministic. The latter guarantees that ap-
plication behavior is architecture independent. This is nec-
essary for separating the architecture and application mod-
els.

To model applications we start from sequential pro-
grams which are restructured into a Kahn Process Net-
work. The tool used to do this is called Y-Chart Appli-
cation Programmers Interface [8] or YAPI. The restructur-
ing is performed with the three functions read, write
and execute, provided by YAPI. The read and write
functions are used for communication in the Kahn Pro-
cess Network. As a side-effect they generate trace events,
which represent the communication workload of a Kahn
process. The execute function is used as an annotation
only. This annotation generates a trace event describing
the computational activity of a Kahn process. These trace
events may be coarse grain, such as “ execute a Discrete
Cosine Transform (DCT)”.

B. Architecture modeling

The Sesame architecture models are implemented in the
discrete-event simulation language Pearl [9]. This is a rela-
tively small but powerful object-based language which has
specifically been designed with the purpose of (abstract)
computer architecture modeling in mind. As a conse-
quence, Pearl has shown to be extremely suitable for easily
and quickly building new or extending existing architec-
ture models [10], while also yielding simulation speeds of
up to an order of magnitude faster than those obtained by
more general-purpose simulation languages. This greatly
improves the scope of the design space that can be ex-

3

Huffman tables

Statistics, bitrate

Quantization tables

Video outVLEQ

RGB2YUV

DCT

DMUXVideo in

Q-Control

Fig. 2. The M-JPEG � application model with Kahn processes (circles) and communication channels (arrows).

plored in a reasonable amount of time.
Pearl provides the user with a default set of post-mortem

simulation statistics, such as utilization of architecture
components and critical path analysis between compo-
nents, and there is support for user-instrumentation to col-
lect statistics. In addition, Pearl allows for easily con-
structing a run-time visualization of the architecture simu-
lation.

Currently, Sesame only provides a small set of Pearl
models of architecture components such as processing
cores, communication media (like busses) and different
types of memory. All models are at the so-called black
box level. For the processing core models this means that
they can simulate timing behavior of both programmable
and dedicated hardware components by simply assigning
a parameterizable latency to the application events from
the Kahn application model. When simulating a pro-
grammable processor, application events are processed us-
ing higher latencies, while for dedicated hardware lower
latencies are used.

III. THE M-JPEG
�

CASE STUDY

A. The application

To demonstrate the flexibility of modeling in Sesame we
applied the current version of our modeling and simulation
environment to a modified M-JPEG encoding application,
referred to as M-JPEG

�
[11]. The M-JPEG

�
application

slightly differs from traditional M-JPEG as it can operate
on video data in both YUV and RGB formats on a per-
frame basis. In addition, it includes dynamic quality con-
trol by means of on-the-fly generation of quantization and
Huffman tables. The application model of M-JPEG

�
is

shown in Figure 2. In this figure, the circles refer to the
Kahn processes and the arrows to the Kahn (FIFO) com-
munication channels.

The data received in the Video-in Kahn process,
which is either in RGB or YUV format, is sent to the DMUX
in blocks of

�����
pixels. The DMUX first determines the

format and then forwards data from RGB frames to the

RGB2YUV converter process, while YUV data is sent di-
rectly to the DCT Kahn process. Once the data has been
transformed by the DCT process the blocks are quantized
by the Q Kahn process using s set of quantization tables.
The next step, performed by the VLE process, is the vari-
able length encoding of the quantized DCT coefficients
followed by entropy encoding, such as Huffman encoding.
Finally, the resulting bitstream is sent to the Video-out
process.

Huffman encoding1 requires tables which are either
static (specified by the user) or dynamic, i.e., specifically
computed on a per-frame basis for the video stream. In
M-JPEG

�
, the tables for Huffman encoding and those re-

quired for quantization are generated for each frame in the
video stream. The quality control process (Q-Control)
computes the tables from information gathered about the
previous video frame. For this purpose, image statistics
and obtained compression bitrate are transmitted by the
VLE to the Q-Control Kahn process. When the calcu-
lations by the Q-Control process are finished, updated
tables are sent to both the Q and VLE Kahn processes. A
detailed description of the M-JPEG

�
application and its

model can be found in [11].

B. The base architecture and mapping

The base M-JPEG
�

target architecture has five process-
ing components connected via a common bus to a shared
memory. In Figure 3, this architecture is shown together
with the mapping of the M-JPEG

�
application onto it. Of

the five processing components in the architecture, one is a
general purpose microprocessor, two are DSPs and two are
non-programmable components. The non-programmable
components are used for input and output processing and
are referred to as respectively the VIP (Video In Processor)
and VOP (Video Out Processor). The two DSPs are used
for computationally intensive tasks. One of them is used
for RGB to YUV conversion and the DCT transform. We
�
In M-JPEG � , we assume that Huffman encoding is the default en-

tropy encoding scheme.

4

DCT

RGB2YUV

Video outVLEQ

RGB2YUV

& DCT

Video in

µP

MEM

BUS

VIP VLEP VOP

DMUX

Q−Control

DSP

Microprocessor

Non−programmable component

Fig. 3. M-JPEG � ’s application to architecture mapping

refer to this component as the RGB2YUV & DCT com-
ponent. The other DSP is used for variable length encod-
ing and is referred to as the VLEP. For the memory we
assume DRAM, while the bus is assumed to be 64 bits
wide. Communication between components is performed
through buffers in shared memory.

In the remainder of this section, we demonstrate how
Sesame and, in particular, its Pearl simulation language,
allows for easily building abstract architecture models. To
this end, Figure 4 shows the Pearl code of the bus model
for the M-JPEG

�
target architecture. As Pearl is an object-

based language and architecture components are modeled
by objects, the code shown in Figure 4 embodies the class
of bus objects.

A bus object has two object variables, mem and setup.
These variables are initialized at the beginning of the sim-
ulation, and more specifically, at the instantiation of a bus
object. The mem variable references the memory object
that is connected to the bus and the setup time of a con-
nection on the bus is specified by setup. A bus ob-
ject has two methods: load and store. The store
method is not shown here since it is identical to the load
method. To explain how the load method works we first
need to give some background on the blockt() func-
tion. Pearl is equipped with a virtual clock that holds the
current simulation time. When an object wants to wait for
an interval in simulated time it uses the blockt() func-
tion. In our example, the bus object uses the blockt()
function to wait for setup time units in order to account
for the connection setup latency. The statement “mem !
load(nbytes, address)” calls the load method

class bus

mem : memory
setup : integer

load : (nbytes:integer, address:integer)->void
{

blockt(setup);
mem ! load(nbytes, address);
reply();

}

// [store method is omitted]

{
while(true) {

block(load, store);
};

}

Fig. 4. Pearl code for the common bus object.

of the memory object mem by sending it a synchronous
message. Since it is synchronous the bus has to wait un-
til the memory has explicitly returned a reply message.
The latter is done by the reply() primitive. This syn-
chronous message passing may also cause the virtual clock
to advance in time, e.g., when the memory object accounts
for the time it takes to retrieve the requested data.

In Figure 4, the reply() returns control to one of the
processor objects (which are connected to the bus object)
that has called the load method. At the bottom is the
main loop of the object which does nothing until either the
load or store method is called (by one of the proces-
sor objects). We note that we do not explicitly model bus
arbitration, but instead we use Pearl’s internal scheduling:
it applies a FCFS strategy for incoming method calls at an
object. As the piece of code in Figure 4 shows, Pearl ob-
jects are simple and compact, and therefore allow for easy
construction of the architecture models.

In the Pearl simulation language, the instantiation of ob-
jects and the specification of the connections between ob-
jects are done using a so-called “topology file”. In Sesame,
this file is also used for specifying the mapping of the
incoming application traces from the Kahn model to the
components in the architecture model. Figure 5 shows the
topology file for the M-JPEG

�
base architecture and map-

ping as shown in Figure 3. The first column of the topology
file contains the names of the objects that need to be instan-
tiated, while after the colon the object class is specified.
Together with this class-name, a number of parameters are
specified. The different classes and their parameters are
explained below.

� The program class is actually not part of the architecture

5

commonbus() {
vidin : program(6,2,[header,buf1],vip)
rgbyuv : program(4,2,[buf2,buf3],rgbdct)
dct : program(1,4,[buf3,xx,type,buf4],rgbdct)
dmux : program(2,7,[header,buf1,fsize,buf2,xx,type,numof],mp)
quant : program(3,4,[buf4,qtable,qcmd,buf5],mp)
control : program(0,7,[numof,stats,qtable,qcmd,hcmd,htable,info],mp)
vle : program(5,6,[buf5,hcmd,htable,stats,flag,stream],vlep)
vidout : program(7,4,[fsize,flag,info,stream],vop)
vip : processor(bus,10,[0,0,20,0,0,0,0,0,0,0])
rgbdct : processor(bus,10,[0,200,0,0,0,0,0,192,0,0])
mp : processor(bus,10,[180,0,0,0,154,1,23,0,2,154])
vlep : processor(bus,10,[0,0,0,0,154,0,0,0,0,154])
vop : processor(bus,10,[0,0,0,20,0,0,0,0,0,0])
xx : buffer(0, 64, 1)
fsize : buffer(0, 4, 4)
header : buffer(1, 7, 1)
type : buffer(0, 1, 4)
numof : buffer(0, 2, 4)
info : buffer(1, 672, 2)
buf1 : buffer(1, 64, 16)
buf2 : buffer(1, 64, 2)
buf3 : buffer(0, 64, 4)
buf4 : buffer(1, 128, 4)
buf5 : buffer(1, 128, 4)
stream : buffer(1, 1, 4)
flag : buffer(0, 1, 4)
qtable : buffer(1, 128, 2)
qcmd : buffer(0, 1, 150)
hcmd : buffer(0, 1, 150)
htable : buffer(1, 1536, 2)
stats : buffer(1, 514, 1)
bus : bus(mem, 1, 8)
mem : memory(10,8)

}

Fig. 5. Topology definition for the M-JPEG � simulation: this shows how Pearl objects are instantiated and connected.

model itself. Instead, a program object reads in an appli-
cation trace from a Kahn process. It then dispatches the
events to a component in the architecture model. So, it
acts as an interface between the application model and the
architecture model. The program class has four parameters
of which the first one is an identifier used for identifying
the event trace queue to read from. The second one gives
the number of FIFO buffers connected to a program object,
after which these FIFO buffers are given in an array. The
purpose of these two parameters will be elaborated upon
in the next section. The last parameter defines on which
processor a program will run: this is the application to ar-
chitecture mapping.� The processor class has three parameters. The first one
describes to which memory interconnect the processor is
connected. The second parameter gives the size of the
instruction set, being the different application events for
which the timing behavior needs to be modeled. This is
followed by the latencies of each of these instructions. The
value of these latencies can be obtained by a low-level sim-
ulator, performance estimation tools or by estimations of
an experienced designer. By adapting these latencies, one
can easily change the speed of a processor.

� The buffer class has three parameters. The first one spec-
ifies whether communication is performed over the inter-
connect or internally. When a buffer connects two pro-
grams which are on the same processor, communication is
assumed to be performed internally. When the two pro-
grams are on different processors, communication is per-
formed through shared memory, resulting in bus traffic.
The second parameter of the buffer class specifies the size
of the tokens in the buffer while the third parameter spec-
ifies the maximum number of these tokens that can be in
the buffer at one time.� The bus class has three parameters. The first one speci-
fies the memory it is connected to. The second one defines
the time for setting up a connection and the third one spec-
ifies the bus width in bytes.� The memory class takes two parameters. The first spec-
ifies the delay for reading or writing one word and the sec-
ond specifies the width in bytes of the memory intercon-
nect it is attached to.

As one can see the topology file allows for easy config-
uration of a Pearl simulation. It is simply a question of
changing a few numbers to change the application archi-
tecture mapping or to change the characteristics of a pro-

6

W = Write
R = Read

Application ApplicationApplication
task A task B task C

R(C)

R(B)
W(A)W(C)

Processor 1 Processor 2

Buffer

Architecture
timing

Architecture
semantics

Bus

Buffer

Processor 1 Processor 2

Bus

(b)(a)

processor
Virtual

processor
Virtual

processor
Virtual

Application
task

Application
task

Application
task

Fig. 6. (A) shows a potential deadlock situation due to scheduling of communication events. Our solution to this problem, using
virtual processors, is illustrated in (B).

cessor. For example, replacing a DSP for a dedicated hard-
ware component in our M-JPEG

�
base architecture model

can simply be achieved by reducing the instruction laten-
cies of the processor object in question.

C. Scheduling of communication events

As we already described, multiple Kahn processes of
the application model can be mapped onto a single ar-
chitecture component. In this case, the incoming event
traces need to be scheduled. Scheduling of communica-
tion events is, however, not straightforward as it may cause
deadlocks. Such a situation is illustrated in Figure 6a. In
this example, Kahn process A reads data from Kahn pro-
cess C, Kahn process B writes data for process C and Kahn
process C first reads the data from B after which it writes
the data for A. Since Kahn processes A and B are mapped
onto a single processor, their read and write events need to
be scheduled. Assume that the read event from Kahn pro-
cess A is dispatched first to the processor 1. Processor 2
receives the read event from Kahn process C. In this case,
a deadlock occurs since both dispatched read events can-
not be carried out as there are no matching write events.
This results in the processors to block.

In Figure 6b, our solution to the above problem is de-
picted. In the architecture model, we distinguish a seman-
tic level and a timing level. The semantic level consists
of virtual processor components (in the topology file of
Figure 5 referred to as program objects) and FIFO buffers
for communication between the virtual processors. These
buffers have a one-to-one relationship with the FIFO chan-
nels in the Kahn application model. As can be seen from
Figure 6b, multiple virtual processors can be mapped onto
a single model of an actual processor. In this scheme, com-

putation events are directly forwarded by a virtual pro-
cessor to the actual processor model which subsequently
models the timing consequences of these events. However,
for communication events, the appropriate buffer at the se-
mantic level is first consulted to check whether or not a
communication is safe to take place. If it is found to be
safe (e.g., data is available when performing a read event),
then communication events may be forwarded to the actual
processor model.

IV. DESIGN SPACE EXPLORATION

In this section we illustrate that Sesame and its Pearl
simulation language facilitate efficient evaluation of dif-
ferent candidate architectures. For this purpose, we per-
formed an experiment in which we modeled, simulated
and briefly studied two alternative communication struc-
tures for the M-JPEG

�
architecture: a crossbar and an

Omega network. To avoid confusion the original M-JPEG
�

architecture will be referred to as the common bus archi-
tecture. In our experiments, the input video stream con-
sists of images captured in a resolution of ��� � � ��� � pixels
with RGB color encoding. Figure 7 shows the simulation
results in terms of measured memory throughputs for all
three candidate architectures (using a common bus, cross-
bar or Omega network). In the following subsections, the
results for each of the communication structures are ex-
plained in more detail.

A. Common bus

In Figure 8, a description is given of the activities of
the various architecture components during simulation of
the common bus architecture. For each component, a bar
shows the breakdown of the time each component spends

7

Commonbus Crossbar Omega

0

10

20

30

40

50

60

70

80

90

100

110

120

Throughput
M

b/
s

Fig. 7. Throughput in MBytes per second

vop

vlep

vip

rgbdct

mp

mem

bus

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Commonbus

Idle

Io

Busy

Fig. 8. Results for the common bus showing busy/io/idle statis-
tics for all architecture components.

on I/O, being busy and being idle. As Figure 8 shows,
the common bus architecture has a high memory utiliza-
tion while the various processors have low utilization and
spend a lot of time doing I/O. As Figure 7 shows, memory
throughput for the common bus is only 70 megabytes per
second. With the input stream of images in ��� � � ��� � res-
olution, a framerate of 76 frames per second is obtained.
While this is more than enough for real time operation,
this is a very low resolution. Such performance is roughly
equivalent to only 3 frames per second in full resolution
PAL television (� ��� ��� ���). The common bus interface
to the memory is clearly a bottleneck and therefore a can-
didate for further exploration. In [4], similar conclusions
about the M-JPEG

�
architecture were drawn from experi-

ments using the Spade architecture modeling and simula-
tion environment.

B. Crossbar

A crossbar is a well-known architecture for applica-
tions in which a high data throughput is needed. Figure 9
shows an architecture of a crossbar. It directly connects ev-
ery processor with every memory bank with just a single
switch latency for each connection. Besides being a fast ar-
chitecture it is also expensive because it uses ��� switches,
� being the number of processors.

To reduce the communication bottleneck of our M-
JPEG

�
architecture, we implemented a Pearl simulation

model for the architecture shown in Figure 9. We replaced
the common bus model in M-JPEG

�
with this crossbar

model. The memory in this architecture is distributed over
five banks. Therefore, a mapping of buffers to memories
was defined. This mapping is performed in the topology
file (see Figure 5) and is, like the application to architec-
ture mapping, easy to configure. As the results in Figure 7
show there is a substantial gain in throughput compared
with the common bus. When we look at the architecture
component statistics in Figure 10 we see that all the com-
ponents spent more time doing work and less time waiting
for I/O. Since the memory load is now divided over five
memories, memory busy percentage is at about 20% for
most memories. Note that memory 5 is still busy for more
than 80% of the time. This will be explored in Section IV-
D.

M = Memory
P	=	Processor

O = Output interface
S = Switch

I = Input interface

M M

O

M

O

M

O

M

OO

P

P

I

I

S S

S S S S S

SSS

SS S

SSS

S

S S

S

S S S S SP I

P I

P I

Fig. 9. The crossbar memory interconnect used in our experi-
ments.

C. Omega Network

As an alternative to the crossbar we also implemented
a model of an Omega network. The main difference is
that the crossbar is a single-stage network whereas the
Omega network is a multi-stage network. This means that
the Omega network does not provide a direct connection
between a processor and the memory. Figure 11 shows
the three-stage Omega network that we used in our exper-
iment. Messages are routed through several stages before
they reach their destination. In general, there are �
	���
��

8

vop

vlep

vip

rgbdct

mp

mem_5

mem_4

mem_3

mem_2

mem_1

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Crossbar

Idle

Io

Busy

Fig. 10. Results for the crossbar showing busy/io/idle statistics
for all architecture components.

stages with ��� � switches per stage where � is the num-
ber of inputs. The routing of the messages through the
stages works as follows: The outputs are represented by
binary numbers. These numbers are regarded as a string
of routing information for the messages. This means that
each message has a bit string attached that is processed in
a bitwise fashion. At stage � the � -highest bit determines in
which direction the message is routed. This is repeated for
each stage so that at the final stage the destination address
of the message matches the output.

I

I

O

O

O

O

O

O

O

O

I

I

I

I

I

I

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

S S S

SSS

S S S

SSS

I
O
S

=
=
=

Input interface
Output interface
Switch

Fig. 11. The three stage Omega network used in our experi-
ments. The stages of the network are connected in a perfect
shuffle pattern.

The advantage of an Omega network is that it is cheaper
to implement because it has less switches than a cross-
bar: it uses � 	���
���� � switches, whereas a crossbar uses
� � switches. The disadvantages are that the setup of a con-
nection costs more because more switches are involved,
and that it is a blocking network. The latter means that it
is not always possible to connect an idle input to an idle
output. The results in Figure 7 show that the Omega net-

work is less than 1% slower than a crossbar. The detailed
statistics in Figure 12 show that the microprocessor spends
more time waiting for I/O compared to the crossbar. This
leads to a slightly lower utilization.

The performance of the Omega network is almost the
same as the performance of the crossbar. Therefore, when
considering both cost and performance, the Omega net-
work seems to be the better choice for replacing the com-
mon bus.

vop

vlep

vip

rgbdct

mp

mem_5

mem_4

mem_3

mem_2

mem_1

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Omega

Idle

Io

Busy

Fig. 12. Results for the Omega Network showing busy/io/idle
statistics for all architecture components.

D. Application bottlenecks

Until now we focussed mainly on the architecture mod-
eling side of the case study. The results of these archi-
tecture simulations indicate that, with the applied archi-
tecture and mapping, the performance is highly commu-
nication bound. However, not all the bottlenecks found
in the simulation are caused by architectural constraints.
While experimenting with the buffer to memory mapping
for the Omega and crossbar architectures it emerged that
one buffer takes 53% of memory bandwidth. This buffer
contains the statistics needed for the (re)calculation of the
Huffman and quantization tables as explained in [11]. For
every block of image data in the M-JPEG

�
application,

these statistics are sent from the VLE process to the Q-
control process. Moreover, the calculation of the Huff-
man and quantization tables themselves also causes a large
performance penalty that shows dramatically in run-time
visualization of the simulation. During this calculation by
the microprocessor, which is performed for each frame, all
other components come to a halt. Only after the compu-
tation of the tables has been finished, all components start
with processing again.

9

V. DISCUSSION AND CONCLUSIONS

The main goal of this work was to study the flexibility
of modeling in Sesame, which aims at the efficient design
space exploration of embedded media systems architec-
tures. More specifically, we performed a case study us-
ing a modified M-JPEG encoding application for which
we investigated the efficiency of modeling and simulating
several different candidate architectures. This was done
by exploring three different alternatives for the memory
interconnect, namely a common bus, crossbar and Omega
network.

Due to the simplicity and expressive power of Sesame’s
Pearl simulation language, modeling and simulating the
three candidate architectures was performed in only a mat-
ter of days. Pearl is an object-based language, which
means that we could exploit features such as “class sub-
typing” to easily exchange the models for the differ-
ent communication/memory architectures. Making these
models a sub-type of a generic interconnect type, the mod-
els could be replaced in a plug-and-play manner.

Not only can models be constructed quickly in Pearl, but
the actual simulation also takes little time. The simulation
of M-JPEG

�
mapped onto the crossbar-based architecture

takes just under 7 seconds. This was done on a Sun Ultra
5 Sparcstation with a video input stream of 16 frames of
��� � � ��� � pixels with RGB encoding.

Although model development in Sesame is already
quick, we plan to make it even faster and easier by develop-
ing a library of template models for common architecture
components. Evidently, such a library-based modeling ap-
proach greatly simplifies the reuse of architecture model
components

REFERENCES

[1] A. D. Pimentel, P. van der Wolf, E. F. Deprettere, L. O.
Hertzberger, J. T. J. van Eijndhoven, and S. Vassiliadis. The
Artemis architecture workbench. In Proceedings of the Progress
workshop on Embedded Systems, pages 53–62, Oct. 2000.

[2] P. Lieverse, P. van der Wolf, E. F. Deprettere, and K. A. Vissers. A
methodology for architecture exploration of heterogeneous signal
processing systems. In Proc. of the Workshop on Signal Process-
ing Systems, pages 181–190, Oct. 1999.

[3] A. W. van Halderen, S. Polstra, A. D. Pimentel, and L.O.
Hertzberger. Sesame: Simulation of embedded system architec-
tures for multi-level exploration. In Proc. of the conference of
the Advanced School for Computing and Imaging (ASCI), pages
99–106, May 2001.

[4] P. Lieverse, T. Stefanov, P. van der Wolf, and E.F. Deprettere. Sys-
tem Level Design with Spade: an M-JPEG case study. In Proc. of
the Int. Conference on Computer Aided Design, November 2001.

[5] J. Rowson. Hardware/software co-simulation. In Proc. of the
Design Automation Conference, pages 439–440, 1994.

[6] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and

E.F. Deprettere. Exploring embedded-systems architectures with
artemis. IEEE Computer, 34(11), Nov. 2001.

[7] G. Kahn. The semantics of a simple lamguage for parallel pro-
gramming. In Proceedings of the IFIP Congress 74, 1974.

[8] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J. Y.
Brunel, W. M. Kruijtzer, P. Lieverse, and K. A. Vissers. Yapi:
Application modeling for signal processing systems. In Proc. of
the Design Automation Conference, pages 402–405, June 2000.

[9] H. L. Muller. Simulating computer architectures. PhD thesis,
Dept. of Computer Science, Univ. of Amsterdam, Feb. 1993.

[10] A. D. Pimentel. A Computer Architecture Workbench. PhD thesis,
Dept. of Computer Science, Univ. of Amsterdam, Dec. 1998.

[11] Andy D. Pimentel, Berry A.W. van Halderen, Paul Lieverse,
Todor P. Stefanov, and Ed F. Deprettere. The startemis case study.
Technical report, University of Amsterdam, 2000.

