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Abstract—Modern signal processing and multimedia em-
bedded systems increasingly need to be able to support a
wide range of applications and standards. These systems re-
quire programmable components for their implementation,
whereas reconfigurable hardware components can also be
used for time-critical tasks without compromising flexibility.
The heterogeneity of such embedded systems and the differ-
ent demands of their target applications greatly complicate
the system design. There are currently no mature tools avail-
able addressing these new aspects.

In this paper, we provide an overview of the Artemis
project which aims at the development of methods and tech-
niques to support the design of highly programmable em-
bedded media systems. The result of Artemis will be a simu-
lation environment for system architecture design space ex-
ploration as well as an experimentation framework for re-
configurable architectures. The combination of these two
frameworks provides a workbench for identifying compu-
tationally intensive tasks in applications which are suitable
for execution on reconfigurable hardware components. The
simulation workbench will provide support for evaluating
instantiations of embedded systems architectures at multiple
levels of abstraction. For this purpose, the level of detail of
architecture models will be adjustable in a seamless manner,
while also facilitating mixed-level architecture simulations.

Keywords— Highly-programmable embedded systems,
media and signal processing, system architecture design, re-
configurable architectures, design space exploration, com-
puter architecture simulation

I. INTRODUCTION

Modern embedded systems, like those for media and
signal processing, increasingly need to be multifunctional
and must support multiple standards. A high degree of pro-
grammability, which can be provided by applying micro-
processor technology as well as reconfigurable hardware,
is key to the development of such advanced embedded sys-
tems. Due to the combination of programmable, recon-
figurable and dedicated hardware components, we refer to
these systems as heterogeneous embedded systems. With
the emergence of highly programmable heterogeneous em-
bedded systems, we have to reconsider the suitability of
the existing techniques for their hardware/software co-

design [1]. Particularly, the traditional application-driven
approach in which a certain application is gradually syn-
thesized into the appropriate hardware and software com-
ponents is not suited for the design of these programmable
systems. Such an approach is ideal for the design of dedi-
cated systems, but it lacks the generalizability to cope with
programmable architectures suited for the processing of a
broad range of applications.

Another trend which affects the design of embedded
systems is the need for reducing the design time to al-
low a short time-to-market. At the same time, the com-
plexity of the designs is increasing. The reason for this
is twofold. Firstly, the systems have to satisfy the per-
formance requirements of a range of applications. Sec-
ondly, technology improvements simply allow for more
and more functionality to be integrated on a single chip.
Reducing the design time of these increasingly complex
embedded systems implies that the traditional approach of
relying on detailed simulation models, such as provided by
cycle-true simulators, as the most important vehicle for the
design space exploration has become infeasible. The ef-
fort required to build such detailed simulators is relatively
high, making it impractical to use them in the very early
design stages. Moreover, the low simulation speeds of
these simulators significantly hamper the architectural ex-
ploration. To solve this problem, a co-design environment
should allow for simulation at a range of abstraction levels.
This way, the speed, required modeling effort and attain-
able accuracy of the architecture simulations can be explic-
itly controlled. In such a co-design environment, abstract
simulation models are used for exploring the large design
space in the early design stages, while in a later stage more
low-level hardware models can be applied for functional
verification or detailed performance studies. Hence, this
calls for concepts to refine the simulation models across
different abstraction levels in a smooth manner, and which
also allow for mixed-level architecture simulations.

The Artemis (ARchitectures and meThods for Embed-
ded MedIa Systems) project aims at reducing the design
time of embedded media systems with a high degree of
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programmability. To this end, a simulation workbench for
architecture design space exploration as well as an exper-
imentation framework for reconfigurable architectures are
developed. In this paper, we present an overview of the
Artemis project and indicate the research challenges that
are ahead of us.

The remainder of the paper is organized as follows. The
next section gives a general description of the Artemis
project. Section III describes how Artemis relates to
other efforts in the fields of simulation of embedded sys-
tems architectures and reconfigurable computing. In Sec-
tion IV, we provide an overview of the architecture simu-
lation workbench and explain how application models are
mapped onto architecture models. Section V describes our
research effort regarding reconfigurable architectures. Fi-
nally, in Section VI we draw our conclusions.

II. THE ARTEMIS PROJECT

To help reducing the design time of highly pro-
grammable embedded systems, the Artemis project ad-
dresses two research challenges. First, an architecture
simulation workbench is being developed which provides
methods, tools and libraries for the efficient exploration of
heterogeneous embedded systems architectures. With the
term efficient, we mean that the simulation workbench al-
lows for rapidly evaluating different architecture designs,
application-architecture mappings and hardware/software
partitionings at various levels of abstraction and for a broad
range of (media) applications. As we will explain, the key
to this high degree of evaluation flexibility is the recog-
nition of separate application and architecture models in
the system simulation. The application model purely de-
scribes the functional behavior of an application while the
architecture model mimics the timing behavior of the ar-
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Fig. 1. The Artemis architecture workbench.

chitecture onto which the application is mapped.
The second research challenge of Artemis consists of

investigating the potentials of reconfigurable embedded
computer architectures as a new means to enhance the pro-
grammability of embedded systems. Reconfigurable com-
puting refers to an implementation style where the exact
functional behavior of a piece of hardware can be config-
ured in order to efficiently process a particular task, and
can be reconfigured later for a different task. Reconfig-
urable hardware components, implemented using for ex-
ample FPGAs, have the potential to deliver a high per-
formance for specific applications with a limited power
consumption, while retaining flexibility. The combination
and integration of reconfigurable components with exist-
ing architectural components is a novel problem. In par-
ticular, integrating a reconfigurable component with a pro-
grammable core, like a VLIW processor, is the subject of
our research.

Figure 1 illustrates how both research activities are inte-
grated into the Artemis architecture workbench and how
this workbench is used for the design and exploration
of architectures for heterogeneous embedded media sys-
tems. The two central parts in Artemis are the architecture
simulation workbench and the reconfigurable architecture
framework. By applying the simulation workbench to a
set of target applications, potential architecture designs
can be swiftly evaluated. The architecture design space
exploration performed at this stage results in recommen-
dations on candidate heterogeneous architectures. In ad-
dition, analysis of application-architecture mappings (i.e.
which application task is mapped onto which architecture
component) is also used to select time-critical candidate
tasks in applications for execution on reconfigurable com-
ponents. These selected code fragments are used as input
to the tools from the reconfigurable architecture frame-
work to thoroughly study their mapping onto a reconfig-
urable component. Such a study will, on its turn, produce
accurate performance estimates of the reconfigurable ex-
ecution which can again be used for the validation and
calibration of the models of the architecture simulation
workbench. Evidently, the combination of the architecture
simulation workbench and the reconfigurable architecture
framework should in the end lead to a proposal for a het-
erogeneous system architecture which allows for efficient
processing of the target applications.

III. PUTTING ARTEMIS INTO PERSPECTIVE

System architecture simulation in the context of hetero-
geneous embedded systems is a relatively new research
field which has received a lot of attention in recent years.
The magic word in most of the research and commer-
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cial efforts in this field is co-simulation. Like its name
already suggests, co-simulation implies that the software
parts (which will be mapped onto a programmable pro-
cessor) and the hardware components of an embedded ap-
plication and their interactions are simulated together in
one simulation [2]. Current co-simulation frameworks
typically combine two (rather low-level) simulators, one
for simulating the programmable components running the
software and one for the dedicated hardware. For soft-
ware simulation, instruction-level processor simulators are
often used, whereas HDLs such as VHDL and Verilog are
usually used for the hardware simulation. Figure 2(a) illus-
trates the general idea of co-simulation. In this figure, the
white half circles refer to the software components which
are executed on programmable architecture components
(black half circles) and the arrows indicate the interactions
between the software and hardware simulators. The hard-
ware and software simulators are either running apart from
each other (e.g. the co-simulators in Seamless CVE, Ea-
gleI/EagleV, Virtual CPU and CoSim [3], Coumeri’s [4]
and Bauer’s [5] environments and Symphony [6]) or they
are integrated to form one monolithic simulator (e.g. Po-
seidon [7], Polis [8], Pia [9] and the work of Soininen et
al. [10]). A major drawback of all of these co-simulators
is their inflexibility. Because they all make an explicit
distinction between software and hardware simulation, it
must already be known which application components will
be performed in software and which ones in hardware be-
fore the system model is built. This significantly compli-
cates the evaluation of different hardware/software parti-
tioning schemes since a whole new system model may be
required for the assessment of each partitioning. For this
reason, the co-simulation stage is often preceded by a stage
in which the application is studied in isolation by means of
a functional software model written in a high level lan-
guage. This typically results in rough estimations of the
application’s performance requirements, which are subse-
quently used as guidance for the hardware/software par-
titioning. In that case, the co-simulation stage is mainly
used as verification of the chosen hardware/software parti-
tioning and not as a design space exploration vehicle.

The Artemis simulation workbench applies a different,
more flexible, approach which was initiated by Lieverse
et al. [11] and, in a different context, Pimentel et al. [12].
Basically, our approach captures the two design stages dis-
cussed above (the early application evaluation stage and
the system architecture evaluation stage) into one simu-
lation methodology. This is illustrated in Figure 2(b).
An application model describes the functional behavior of
an application independently from architectural specifics,
assumptions on hardware/software partitioning or timing
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Fig. 2. (a) Typical hardware/software co-simulation versus (b)
the Artemis approach.

characteristics. Subsequently, the application model gen-
erates computational and communication events for the
architecture model. This architecture model, which cap-
tures the timing behavior of the architecture, can simulate
the performance consequences of the application events
for both software execution (by a programmable com-
ponent) or reconfigurable/dedicated hardware execution.
So, unlike traditional co-simulation in which the software
and hardware simulation are regarded as the co-operating
parts, we explicitly distinguish application simulation and
architecture simulation where the latter involves simula-
tion of programmable, reconfigurable and dedicated hard-
ware components. As a consequence, a single application
model can be used to exercise different hardware/software
partitionings or even to evaluate alternative underlying ar-
chitectures. A more detailed description of our simulation
methodology follows in the next section.

Another issue that most of today’s co-simulation re-
search efforts fail to address is how architecture models
can be refined in a seamless manner across multiple levels
of abstraction and how mixed-level architecture models (in
which various architecture components are modeled at dif-
ferent levels of abstraction) are best supported. These are
regarded as key issues in Artemis, which are discussed in
detail in [13].

Regarding our reconfigurable architecture research, the
majority of related work focuses on the following two sub-
jects: 1) the design process from application to actual
FPGA hardware and 2) run-time reconfiguration (RTR) of
FPGAs. Research on the first subject includes shortening
the design time and automating the design process [14].
While this subject remains to be an important one, most of
the current research effort is put into run-time reconfigura-
tion of FPGAs. The main motivation behind run-time re-
configuration is that hardware resources are still expensive
and this can somewhat be compensated by re-using hard-
ware. The research in this area focuses on decreasing the
reconfiguration time [15] and architectural design of inter-
connection networks and FPGA modules [16], [17], [18].
Summarizing these efforts, it can be observed that they use
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fine-grain FPGA arrays which do not fully target multime-
dia applications and, moreover, target very specific algo-
rithms. We intend to use coarser-grain FPGA structures
which are better suited for the multimedia application do-
main and the multiplicity of algorithmic requirements as-
sociated with it.

IV. THE SIMULATION WORKBENCH

Based on previously gained experience, such as from
the Spade [11] and Mermaid [12] projects, we strongly be-
lieve that the recognition of separate application and ar-
chitecture models for the simulation of embedded systems
architectures (as is illustrated in Figure 2b) plays a key role
in establishing a high degree of modeling and exploration
flexibility. Essential in this approach is that the application
model is architecture independent. This implies that a sin-
gle application model can be used for, or mapped onto, a
range of architecture models, possibly representing differ-
ent system architectures or simply modeling a single sys-
tem architecture at various levels of abstraction.

After mapping, an application model can be co-
simulated with an architecture model by means of trace-
driven simulation. To this end, the application model gen-
erates traces of computational and communication events,
describing application behavior, which are consumed by
the trace-driven architecture simulator. The resulting co-
simulation subsequently allows for evaluating the system
performance for a particular application, input data-set,
mapping and underlying architecture. In the remainder
of this section, we will first describe how applications are
modeled in Artemis after which the mapping and architec-
ture modeling are explained.

A. Application modeling

For the modeling of applications, we use Kahn Process
Networks [19]. To obtain a Kahn application model, a se-
quential application (written in C/C++) is restructured into
a program consisting of parallel processes communicat-
ing with each other via unbounded FIFO channels. In the
Kahn paradigm, reading from channels is done in a block-
ing manner, while writing is non-blocking. To generate
the application events which drive the architecture simula-
tor, the code of the Kahn application is instrumented with
annotations. These annotations generate computational
events, which may be as abstract as ‘compute a DCT’,
and communication events specifying from/to which (soft-
ware) channels data is read or written.

The choice for Kahn Process Networks as application
model is motivated by the fact that Kahn models nicely fit
with the dataflow application domain (to which most of our
target applications belong) and that they are deterministic.

The latter means that the same application input always re-
sults in the same application output. So, the functionality
of a Kahn application is not affected by architectural laten-
cies, i.e. the application behavior is architecture indepen-
dent. This is essential to guarantee the validity of the event
traces when the application and architecture simulators are
executed independently of each other [20].

As a starting point, we use the Yapi [21] framework for
the implementation of the Kahn application models. Yapi
provides the annotation functions which handle the Kahn
interprocess communication and the generation of trace
events. It also contains an application simulation engine
which allows to concurrently execute the Kahn processes
using threads. Currently, the abstraction level of annota-
tions in Yapi directly relates to the level of generated appli-
cation events. Since the abstraction level of the application
events should match with the amount of detail in the archi-
tecture model, a refinement of the architecture model often
implies that the annotations in the application model also
need to be refined. Evidently, such correlation between
the application and architecture models is undesirable for
the Artemis simulation workbench, in which we strive for
application models that transparently support architecture
simulation at all of the required levels of abstraction.

We aim at improving the application modeling such that
it is possible to generate application events at multiple
levels of abstraction without the need to change the an-
notations in the application model. A possible solution
which we are investigating is to introduce a separate hier-
archical annotation description which describes how finer
grained application events are generated from a particular
coarse grained annotation. In this approach, the applica-
tion model is instrumented with high-level annotations re-
ferring to coarse grained computations. Like in Yapi, these
annotations can directly generate the application events
for abstract architecture models. But, using the hierarchi-
cal annotation description, coarse grained events such as
‘compute a DCT’ can also be translated into several sub-
task events (e.g. one for each loop in the DCT computa-
tion) or even to instruction-level events which may include
detailed information such as address references. The lat-
ter type of application events can, for instance, be used
for the evaluation of cache and TLB performance of mi-
croprocessor components in a heterogeneous architecture.
Two important characteristics of this hierarchical annota-
tion scheme are the preservation of architecture indepen-
dence of the annotated application model (i.e. it will not be
polluted by low-level, architecture dependent, annotations)
and extendibility. The latter implies that the modeler only
needs to describe the annotation-hierarchy up to the level
of interest. So, if one is not interested in instruction-level
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events, then they can simply be left out in the annotation
description.

B. Mapping and architecture modeling

Both the Kahn processes and channels of the application
model are explicitly mapped onto the hardware compo-
nents from the architecture model. With the term mapped,
we mean that the generated trace of events from a specific
Kahn process is routed towards a specific component in-
side the architecture model by using a trace-event queue.
The Kahn process dispatches its application events to this
trace queue while the designated component in the archi-
tecture model consumes them. This is illustrated in Fig-
ure 3. Mapping the FIFO channels between Kahn pro-
cesses (shown by the dashed arrows in Figure 3) defines
which communication medium at the architecture level
is used for the data exchanges. In our example of Fig-
ure 3, one Kahn application channel is mapped onto a
hardware FIFO buffer between the two processing com-
ponents while another one is mapped onto the bus connec-
tion. One application channel stays unmapped since both
its application tasks are mapped onto the same processing
component.

As shown above, it is possible to map the event traces
of two or more Kahn processes onto a single architec-
ture component (e.g. when several application tasks are
mapped onto a microprocessor). In that case, the incom-
ing event traces need to be scheduled according to a user-
supplied policy. Reversibly, Kahn processes should also
be able to dispatch application events to multiple event
queues such that a single application task can be mapped
onto multiple architecture components (e.g. when refining
an architecture model such that a component is decom-
posed into a number of more detailed components).

The underlying architecture model is solely a perfor-
mance model and is therefore non-functional. This is pos-

sible because the functional behavior is already captured
in the application model, which subsequently drives the
architecture simulation. If the application behavior is data
dependent, then the traces of application events also de-
pend on the input data. The architecture model is con-
structed from generic building blocks provided by a li-
brary. This library contains performance models for pro-
cessing cores, communication media (like busses) and dif-
ferent types of memory. At a high level of abstraction, the
model of a processing core is a black box which can model
a programmable processor, a reconfigurable component or
a dedicated hardware unit. This is accomplished by the
fact that the architecture simulator assigns the latencies to
the incoming computational application events. To model
software processing of an application event, a relatively
high latency can be assigned to the event, as compared to
when the application event would have been handled by
dedicated or reconfigurable hardware. So, by simply vary-
ing the latencies for computational application events, dif-
ferent hardware/software partitionings can be evaluated.

In this approach, the communication application events
(reads and writes to Kahn FIFO channels) are used for
modeling the performance consequences of data trans-
fers and synchronizations by writing to and reading from
the appropriate communication medium at the architecture
level. Unlike in the application model where all FIFO
channels are unbounded, writes at the architecture level
may also be blocking dependent on the availability of re-
sources (e.g. buffer space).

As design decisions regarding hardware/software parti-
tionings are made, the application events may be refined
and may become increasingly geared towards a certain ar-
chitecture implementation, like instruction-level events are
oriented towards a microprocessor implementation. Like-
wise, the components of the architecture model may be
refined such that they start reflecting the characteristics
of a particular implementation (e.g. dedicated versus pro-
grammable hardware).

B.1 Spade and Sesame

For the actual implementation of the architecture mod-
els, the Artemis simulation workbench provides two sim-
ulation trajectories by means of the Spade (System-level
Performance Analysis and Design space Exploration) [11]
and Sesame (Simulation of Embedded System Architec-
tures for Multi-level Exploration) [22] frameworks. As we
will explain, the two frameworks are supplementary rather
than competitive and have their own merits which justify
their presence in the Artemis workbench.

Spade is the product of a research cooperation between
the Delft University of Technology, University of Leiden
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and Philips Research. It provides a small library which
contains a black box model of a processing core, a generic
bus model, a generic memory model and several inter-
faces for connecting these model building blocks with each
other. All components are implemented using the cycle-
based TSS simulation system [23], which is a Philips in-
house product. The use of TSS exploits the fact that Philips
has a large user community applying TSS for the imple-
mentation of cycle-true architecture simulators. Evidently,
sharing a common simulation backbone significantly sim-
plifies the transition from high-level Spade models to de-
tailed TSS architecture models. For this reason, Spade
envisions a trajectory which is shown at the left-hand
side of Figure 4. The application model is mapped onto
a high-level architecture model, which operates on rela-
tively coarse grained application events (such as ‘compute
DCT’). This type of models allows for flexible exploration
and analysis of issues such as hardware/software partition-
ings, communication bottlenecks and different communi-
cation structures. In the next step, when several design
decisions have been made and a more accurate simula-
tion of certain system components is required, a detailed
simulator for these components is embedded into the over-
all architecture simulator. This is shown in the second
stage of the Spade trajectory in Figure 4, where process
A will be implemented in software on a microprocessor.
Instead of mapping this process onto an abstract Spade
model of a processing core, the latter is substituted for a
detailed instruction-level simulator which emulates the ac-
tual code for process A. The process of embedding more
detailed simulators is continued such that more and more
functionality is gradually incorporated into the architecture
model. At a later stage, this architecture simulator may
then be used as a starting point for traditional (low-level)
co-simulation as shown in Figure 2(a).

Spade’s major strengths are its simplicity and flexibil-
ity (using only a few model building blocks, a large va-
riety of system-level performance studies can rapidly be
conducted) and its easy interfacing to more detailed TSS
models. Its current weaknesses, which are addressed by
the Sesame trajectory, are twofold. First, the step from an
abstract Spade architecture model to a detailed (e.g. cycle-
true) simulator of a component is rather large. Clearly,
this step may require a substantial software engineering
effort when such a detailed simulator is not yet available.
Second, TSS’s cycle-based nature unquestionably is effec-
tive for cycle-true simulations, but it may not always be
the best simulation method for the black box architecture
models which are used for the early design stages. In these
abstract architecture models, the events which are impor-
tant to the performance prediction usually occur with non-
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Fig. 4. The Artemis simulation workbench embodied by the
Spade and Sesame frameworks.

uniform time steps and may therefore be separated by large
time frames. For example, a coarse grained application
event such as ‘compute DCT’ typically requires the sim-
ulation of a multi-cycle latency at the architecture level.
Consequently, cycle-based TSS will induce extra overhead
for simulating every single cycle of such multi-cycle laten-
cies.

The second simulation trajectory in Artemis, provided
by the Sesame framework, is a research effort from the
University of Amsterdam in close collaboration with the
Spade team. Instead of using TSS, the Sesame architecture
models are implemented in the discrete-event simulation
language Pearl [24]. This is a relatively small but power-
ful object-based language which has specifically been de-
signed with the purpose of (abstract) computer architecture
modeling in mind. As a consequence, Pearl has shown to
be extremely suitable for easily and quickly building new
or extending existing architecture models [25], while also
yielding simulation speeds of up to an order of magnitude
faster than those obtained by more general-purpose sim-
ulation languages. At the downside, Pearl lacks the easy
interfacing to more detailed simulators like Spade with its
TSS models provides.

Discrete-event simulation, as performed by Pearl, is in
contrast to cycle-based simulation well suited for abstract
architecture models. It therefore overcomes the potential
performance drawback of TSS and improves the scope
of the design space that can be explored in a reasonable
amount of time. The Sesame trajectory, which is depicted
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at the right-hand side of Figure 4, exploits the high sim-
ulation speed of Pearl as well as the ease and swiftness
with which it can construct and extend architecture mod-
els. Starting from the same black box architecture models
as in Spade, Sesame allows for gradually refining these
models. To this end, it provides an architecture model li-
brary which is more extensive than that of Spade as it in-
cludes models for architecture components at several lev-
els of abstraction. This means that there will be, for ex-
ample, multiple instances of a microprocessor model such
as a black box model, a model which accounts for the per-
formance consequences of the processor’s memory hier-
archy (e.g. TLB and caches) and a model which accounts
for the performance impact of both its memory hierarchy
and datapath (e.g. pipelining and ILP). Naturally, the more
detailed models require the application model to be able
to generate more detailed application events. The Sesame
architecture models are less generic than those from Spade
as they are not fixed building blocks with pre-defined in-
terfaces but merely are template models which can be ex-
tended and adapted to the user’s likings. This slightly in-
creases the effort needed for building the architecture mod-
els, but it allows for more modeling flexibility which can
be helpful when refining the models.

The above preconditions result in two research chal-
lenges which are addressed in Sesame. First, it should be
possible to adjust the level of abstraction of the architec-
ture models in a seamless and graceful manner. Refine-
ment of one component in the architecture model should
not lead to a totally renewed implementation of the en-
tire model. Ideally, only the models of those architec-
ture components which need to be refined are replaced in
a ‘plug-and-play’ fashion by more detailed models. This
embedding of refined, and possibly decomposed, compo-
nent models in an otherwise unchanged architecture model
seriously affects the interconnection with the rest of the
architecture model. The second research challenge, which
can be regarded as a direct consequence of the first one, in-
volves the support for mixed-level simulation. This means
that the abstraction level at which the different architecture
components are modeled does not necessarily need to be
the same. In [13], we show that transactions between ar-
chitecture components form the main obstacle for mixed-
level simulation.

As was shown, both Spade and Sesame contribute to
the Artemis simulation workbench in their own way:
Sesame purely focuses on quantitative performance eval-
uation whereas Spade is more open to the later stages of
the design trajectory by applying the TSS simulation back-
bone. For Sesame, we are also considering some basic
support (e.g. model wrappers) for interfacing it to more

traditional cycle-true and RTL simulators such that the lat-
ter can import Pearl models. Also, it is imperative to have
an interface between the Spade and Sesame trajectories
which is well defined and for which support is provided
to effectively utilize it. Figure 4 illustrates a possible in-
terfacing scenario in which the Sesame trajectory can pro-
vide two types of feedback to the Spade trajectory. First,
refined Sesame models may give timing feedback to the
high-level Spade models in order to fine-tune the latencies
they account for the different application events. Second,
the design space exploration performed by Sesame allows
for qualitative feedback on architectural specifics. This
feedback may range from information that guides the con-
struction and parameterization of low-level TSS models to
(semi-)automatic generation of TSS-based equivalents of
the Pearl models. The latter could be realized using an ar-
chitecture model description language that is able to gen-
erate both TSS and Pearl architecture models.

To drive the realization and fine-tuning of the previously
discussed application and architecture modeling methods,
we initiated the Startemis case study. In Startemis, a modi-
fied M-JPEG encoder application, which includes dynamic
quality control and can operate on both RGB and YUV
formats on a per-frame basis, is modeled and studied for a
number of target architectures. In [26], some initial results
from the Startemis case study are presented.

V. THE RECONFIGURABLE ARCHITECTURE

FRAMEWORK

The hardware/software co-design paradigm is still often
simplified to a strict binary decision, for either a dedicated
function-specific ‘co-processor’, or a general purpose soft-
ware programmable CPU. As also hinted in Figure 2, the
Artemis project aims at supporting a sliding scale of op-
tions along the hardware/software axis. So next to pure and
frozen function-specific dedicated hardware units, such
units can be more flexible in their functionality by mak-
ing these slightly programmable. On the other end, a gen-
eral purpose programmable CPU can be tailored towards a
specific application domain by adding domain-specific in-
structions and/or reconfigurable functional units. In terms
of required electrical energy to execute a certain function
(the power efficiency), both ends of the hardware/software
scale can differ by two orders of magnitude. This is de-
noted in Figure 5. Having a choice for intermediate points
in the hardware/software design trade-off, can help consid-
erably for reaching an efficient architecture during design
space exploration, and can influence the application parti-
tioning decisions.

To obtain a higher efficiency for CPUs in the domain
of media processing, a conventional approach is to add
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specific ‘media instructions’ to the instruction set of the
CPU. They provide increased performance due to the com-
bination of 1) implementing small kernel functions which
would otherwise require a couple of atomic operations,
and 2) implementing a vector-style (single instruction mul-
tiple data) parallelism by executing this function in parallel
on byte or half-word sections inside a full word. However,
the size of the instruction set of a CPU (the number of
different opcodes) is bounded by restrictions on fixed in-
struction formats and complexity of its decoder. Therefore
the design of a media instruction set is a trade-off between
generality and performance gain of specific instructions in
the selected application domain.

A novel approach is to add reconfigurable hardware as a
functional unit to the CPU (e.g. [27]). This allows to adapt
the instruction set on the fly, individually optimized for
each application. Potentially, this improves performance
due to the virtually infinite choice of instructions. As
others, we use the term FPGAs when referring to recon-
figurable components. However, other innovative circuit
techniques supporting reconfiguration may also be consid-
ered in Artemis. Such circuit techniques would affect im-
portant parameters like configuration element grain size,
kernel function complexity, reprogramming speed, achiev-
able clock frequency and power efficiency.

Integrating a reconfigurable component with a pro-
grammable core, like a VLIW processor, is the main target
of our research. In particular the combination of recon-
figurable components with a media-optimized VLIW core
is challenging. For this purpose, the quantitative evalu-
ation of the performance of a reconfigurable component
needs to be addressed. In addition, the existing program-
ming model needs to be extended in order to support the
reconfiguration. The research effort will therefore result
in proposals for new micro-architectures that include re-
configurable components together with the associated pro-
gramming model. For this work, the proposed architec-
ture simulation workbench will be used for architectural

simulation
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Architecture
Core
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Architecture

Evaluation
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Hardware
core

FPGA

Embedded

Architecture

workbench

Media

Fig. 6. The FPGA investigation framework.

performance evaluation at the system level. For more de-
tailed performance studies of the extended CPU, the work-
bench can be supplemented with a cycle-true TSS model
of the new TriMedia VLIW core from Philips Research
[28]. The resulting efficiency of the CPU combined with
reconfigurable components, could influence the mapping
of the application tasks onto architecture components.

More specifically, we will proceed as described in Fig-
ure 6 and we will investigate the following: First, we
will identify and examine embedded media applications
to determine if there are functions that occur in certain
sequences that will provide some advantages when im-
plemented in FPGAs. Examples for such functions are:
IDCT, FFT, filters, huffman (de-)coders, etc. Conse-
quently, we will determine the functional behavior of the
FPGA structure needed to implement such functions and
the primitive instructions required to be implemented in
an FPGA logic design style together with the primitive
program that is implemented in the FPGA. In combina-
tion with the available VLIW core and the FPGA program-
ming of the functions, a hardware model for the processing
unit will be determined. Consequently, the effectiveness of
the reconfigurable hardware processing unit in the overall
system architecture will be evaluated using the architec-
ture simulation workbench. In case satisfactory results are
obtained, new architecture extensions will be proposed to
the design teams. In case the results are not satisfactory
or there are more candidates to consider, additional effort
will be dedicated to determine candidate functions or to
update the configurable component circuit style. Some ini-
tial results of our reconfigurable architecture research are
presented in [29].



9

VI. CONCLUSIONS

Because of the growing need for supporting multiple
applications and standards, modern embedded systems ar-
chitectures increasingly become heterogeneous, in which
dedicated hardware components provide high performance
for time critical tasks and programmable components pro-
vide flexibility. In this paper, we presented the Artemis
project in which methods and techniques are developed
to support the design of highly programmable heteroge-
neous embedded systems targeting the multimedia appli-
cation domain. As a result, an architecture workbench is
developed consisting of both a simulation environment for
flexible architectural design space exploration and an ex-
perimentation framework for reconfigurable architectures.

The simulation environment allows for swift evaluation
of different architecture designs, application-architecture
mappings and hardware/software partitionings at various
levels of abstraction and for a broad range of applications.
This evaluation flexibility is obtained by recognizing sepa-
rate application and architecture models in the system sim-
ulation. The reconfigurable architecture framework inves-
tigates the potentials of reconfigurable architectures as a
new means to enhance the programmability of embedded
systems without compromising performance. By combin-
ing the two frameworks, computationally intensive tasks
can be identified in applications which are suitable for ex-
ecution on a reconfigurable hardware component.
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