
UTILIZING SYNTHESIS METHODS IN ACCURATE SYSTEM-LEVEL
EXPLORATION OF HETEROGENEOUS EMBEDDED SYSTEMS

Cagkan Erbas Andy D. Pimentel

Dept. of Computer Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands�

cagkan,andy � @science.uva.nl

ABSTRACT
In this paper, we present a new mapping strategy for effi-

cient design space exploration of heterogeneous embedded
systems. The new mapping approach is developed within
the context of the Sesame framework [1], [2] to improve its
simulation accuracy and capabilities. In Sesame, separate
application and architecture models together with an ex-
plicit mapping step are recognized within a system simula-
tion. Originally, Sesame maps application models onto ar-
chitecture models using trace-driven co-simulation of both
models. However, this approach is limited by the fact that
information is lost in the linear application traces that drive
the architecture model. This may hamper accurate archi-
tecture simulation. The new mapping approach, which is
based on Integer-controlled Dataflow actors, removes these
limitations at the cost of a slight increase in complexity re-
garding the mapping. We compare our new approach with
the current state-of-the-art mapping strategies under multi-
ple criteria. Also with examples and a simple experiment,
we illustrate how we integrate our new mapping strategy
into Sesame’s mapping layer.

To appear in Proc. of the IEEE Workshop on Signal Processing Systems, Seoul, Korea, Aug. 2003.

1. INTRODUCTION

Modern embedded systems, like those for media and sig-
nal processing, increasingly need to be multi-functional and
must support multiple standards. This can be achieved with
a high degree of programmability, which is provided by the
microprocessor technology as well as reconfigurable hard-
ware. However, real-time performance requirements and
constraints on cost and power consumption still require sig-
nificant parts of these systems to be implemented in dedi-
cated hardware blocks. As a result, modern embedded sys-
tems evolve as heterogeneous systems; i.e. they consist of
components from a range of fully programmable process-
ing cores to dedicated blocks for time-critical application
tasks. With the recent developments in silicon technology,
such heterogeneous systems are usually integrated on a sin-
gle chip, yielding multiprocessor systems-on-chip (SoCs).

For these modern embedded systems, it becomes more
and more important to have good tools for system-level ex-
ploration, especially at an early design stage where the de-
sign space is very large. At this stage, the designer is more
interested to see system-level trade-offs between different
design alternatives, rather than an elaborate simulation valid
only for a specific design. On the other hand, the available
common practice tools are generally cycle-accurate simu-
lators useful for synthesis rather than exploration. Increas-
ingly these simulators become unsuited for early design space
explorations as they are unable to cope with the increase
in system complexity. At this point, the exploration tools
should provide rapid evaluation of different design alterna-
tives, keeping the designer from making high investments
in terms of manpower and simulation time.

Unfortunately, design space exploration tools are not
mature enough to satisfy all these requirements. They are
typically either over-detailed or too superficial for system
exploration. To fill this gap, using synthesis methods in sys-
tem exploration is gaining popularity. There exist two dis-
tinct tracks to achieve this goal: top-down or bottom-up. In
the top-down approach, a relatively inaccurate exploration
tool is equipped with methodologies borrowed from a syn-
thesis tool. But this should be done with special care as one
should refrain from adding details not useful in terms of ex-
ploration. An entirely opposite path is taken in the bottom-
up approach in which a synthesis tool is taken as a basis and
it is gradually simplified to achieve a rapid simulator. How-
ever, in both tracks, the ultimate goal is to achieve a rapid
reliable simulator that can quickly evaluate a large design
space and provide figures about system trade-offs (utiliza-
tion of components, data throughput, communication media
contention, etc.) with high accuracy.

In the Sesame framework [1], [2], which we develop
within the context of the Artemis project [3], we aim at
building an architecture workbench which provides model-
ing and simulation methods and tools for the efficient and
accurate design space exploration of heterogeneous embed-
ded media systems. This workbench should allow for rapid
performance evaluation of different architecture designs, ap-



BA

trace
event

FIFO
bus

Memory

Processor 1 Processor 2 Architecture Model

mapping

Mapping Layer

Application Model

Mapping Strategy
TD / ETD

Fig. 1. The Sesame environment: modeling and exploring
a simple producer/consumer communication is shown.

plication to architecture mappings, and hardware/software
partitioning. In addition, it should do so at multiple levels
of abstraction and for a wide range of multimedia applica-
tions. To achieve this flexibility, the Sesame framework
recognizes separate application and architecture models to-
gether with an explicit mapping step to map an application
model onto an architecture model. Currently, the Sesame
environment, shown in Figure 1, uses the trace-driven (TD)
approach for mapping in which the execution of an applica-
tion model generates traces of application events that repre-
sent the application workload imposed on the architecture.
However, besides being very flexible and efficient, this ap-
proach has a major drawback: the application information
on control flow, parallelism, and data-dependency is lost.
The loss of information may severely limit the accuracy and
the capabilities of the simulation environment. In this pa-
per, we present a new mapping strategy – which is based
on Integer-controlled Dataflow actors [4] – to replace the
TD approach in order to remove these drawbacks. With ex-
amples, we illustrate how we integrate our new mapping
strategy into the Sesame environment.

The rest of this paper is organized as follows: next sec-
tion discusses different approaches pursued for design space
exploration, which is as well, a summary of the related work.
Section 3 introduces our new mapping strategy and com-
pares it with the current state-of-the-art mapping approaches
under multiple criteria. In Section 4, we illustrate how we
make use of our new mapping strategy with examples and
the improvement on performance numbers with a simple ex-
periment. Finally, Section 5 provides an overview of the
current implementation and concludes the paper.

2. DESIGN SPACE EXPLORATION

Different approaches can be chosen for design space explo-
ration, depending on the formalism. For example, Petri Nets

and Process Networks are such formalisms frequently used
in modeling of heterogeneous systems. CodeSign [5] is an
environment where Petri Nets are combined with Object-
Oriented concepts to build structural and composition mech-
anisms that are lacking in Petri Nets. However, Petri Nets
are out of the scope of this paper.

Ptolemy [6] is an environment for simulation and proto-
typing of heterogeneous systems. It supports multiple mod-
els of computation (MoC) within a single system simula-
tion. It does so by supporting domains to build sub-systems
each conforming to a different MoC. Ptolemy supports an
increasing set of MoCs, including all dataflow MoCs [7]:
Synchronous Dataflow (SDF), Boolean Dataflow (BDF), In-
teger-controlled Dataflow (IDF), Dynamic Dataflow (DDF),
together with the (Kahn) Process Network (KPN) MoC [8].
A number of these MoC’s are also utilized in our Sesame
environment: as we will explain, application behavior is
modeled using the KPN MoC, the architecture-level oper-
ations are modeled using SDF actors, and the control flow
and the data-dependent behavior within the Kahn processes
are captured and conveyed to the architecture model level by
IDF actors. Especially the utilization of SDF and IDF actors
will become more clear in the given examples in Section 4.

A number of exploration environments such as VCC [9],
Polis [10], and Milan [11] facilitate flexible system-level de-
sign space exploration by providing support for mapping a
behavioral application specification to an architecture spec-
ification. However in Sesame, we push the separation of
modeling application behavior and modeling of architec-
tural constraints at the system-level to even greater extents.
We do so by recognizing separate application and architec-
ture models within a system simulation. An application
model describes the functional behavior of an application,
including both computation and communication behavior.
The architecture model defines architecture resources and
captures their performance constraints. An explicit map-
ping step maps an application model onto an architecture
model for co-simulation.

Both the Spade [12] and Archer [13] environments show
a lot of similarities with the Sesame environment in the
sense that they share the same philosophy by recognizing
separate application and architecture models. However, each
of these environments uses its own architecture simulator
and follows a different mapping strategy for co-simulation.
In the next section, we discuss these mapping strategies and
compare them under multiple criteria.

3. MAPPING STRATEGIES

Exploration environments making a distinction in applica-
tion and architecture modeling need an explicit mapping to
relate these models for co-simulation. In Sesame, we ap-
ply the trace-driven (TD) approach to carry out this task.



data Trace
Generator Generator

IDF Graph

Trace

Scheduler

Trace’

IDF Graph

Simulator

Trace

Trace
Generatordata

Architecture
Simulator

Architecture

Layer
Application

Mapping
Layer

Layer

Application model
(KPN)

Architecture

Trace Transformations

Trace’

Application Model
(KPN)

Lower Simulation Time Higher Accuracy

Fig. 2. The traditional Trace Driven approach versus our
Enhanced Trace Driven approach.

In this approach, application processes implemented in the
Kahn Process Network (KPN) MoC communicate with each
other via FIFO channels. The workload of an application is
captured by instrumenting the code of each Kahn process
with annotations. By executing the application model with
specific input data, each process generates its own trace of
application events1. These events are coarse-grained oper-
ations like read(pixel-block,channel-id) and execute(DCT).
At the mapping layer, application traces are transformed
into architecture traces which are subsequently used to drive
architecture model components. Such a trace transforma-
tion guarantees a deadlock-free schedule at the architec-
ture layer when application events from different Kahn pro-
cesses are merged. The latter occurs when multiple Kahn
application processes are mapped onto a single architecture
model component. This mapping strategy is illustrated on
the left side in Figure 2.

Exploration environments using the TD approach can
fail to provide numbers with high accuracy. This is due to
the loss of application information (about control flow, par-
allelism, dependency between events, etc.) which is present
in the application code, but which is not present in the to-
tally ordered application traces. The Sesame environment,
being a spin-off from the Spade project [12], also inherits
its TD approach. Recent research on Sesame [14], [15]
showed us that refining architecture model components also
requires refining the architecture events driving them. Again
due to the information loss in the application traces from
which the architecture events are derived, the latter is not
always possible with the traditional TD approach. The only
way to improve this is to change the mapping strategy. Since

1We will use “application events” and “application-level operations”
interchangeably throughout the text. The same is true for the terms “archi-
tecture events” and “architecture-level operations”.

we start up with an exploration tool in hand, we follow the
top-down approach. We take Sesame as a basis and en-
hance its mapping layer with a synthesis method, which in
our case are IDF graphs [4]. The IDF MoC is powerful
enough to perform system simulation, synthesis, and code
generation. However, currently in Sesame, it is only used
for simulation purposes. Further developments such as de-
scribing certain functions with IDF actors are within the
possibilities of future research; we believe that this would
open the way for a transition from design space exploration
to system synthesis. With the current utilization of IDF
actors for mapping, we move from the traditional TD ap-
proach to a new mapping strategy which we call the En-
hanced Trace Driven (ETD) approach.

This new mapping strategy, illustrated on the right side
in Figure 2, can be explained as follows: for each Kahn pro-
cess at the application layer, we synthesize an IDF graph at
the mapping layer. This results in a more abstract repre-
sentation of the application code inside the Kahn processes.
These IDF graphs consist of static SDF actors (due to the
fact that SDF is a subset of IDF) embodying the architec-
ture events which are the – possibly transformed – repre-
sentation of application events at the architecture level. In
addition, to capture control behavior of the Kahn processes,
the IDF graphs also contain dynamic actors for conditional
jumps and repetitions. IDF actors have an execution mech-
anism called firing rules which specify when an actor can
fire. This makes IDF graphs executable. However, in IDF
graphs, scheduling information of IDF actors is not incorpo-
rated into the graph definition, and it should be supplied via
a scheduler explicitly. The scheduler in Sesame operates
on the original application event traces in order to sched-
ule our IDF actors. The scheduling can be done either in a
static or dynamic manner. In dynamic scheduling, the ap-
plication and architecture models are co-simulated using a
UNIX IPC-based interface to communicate events from the
application model to the scheduler. As a consequence, the
scheduler only operates on a window of application events
which implies that the IDF graphs cannot be analyzed at
compile-time. This means that, for example, it is not pos-
sible to decide at compile-time whether an IDF graph will
complete its execution in finite-time; or whether the execu-
tion can be performed with bounded memory2.

Alternatively, we can also schedule the IDF actors in a
semi-static manner. To do so, the application model should
first generate the entire application traces and store them
into trace files (if their size permits this) prior to the archi-
tectural simulation. This static scheduling mechanism is a
well-known technique in Ptolemy and has been proven to be

2Many of the analysis problems in IDF converge to the halting problem
of Turing machines. This is due to the power of the MoC. In [16], Buck
shows that it is possible to construct a universal Turing machine with only
using BDF actors (IDF is an extension of BDF, see [4]) together with actors
for performing addition, subtraction and comparison of integers.



very useful for system simulation [4]. However in Sesame,
it does not yield to a fully static scheduling. This is because
of the fact that the SDF actors in our IDF graphs are tightly
coupled with the architecture model components. An SDF
actor sends a token to the architecture layer to initiate the
simulation of an event. It is then blocked until it receives
an acknowledgement token from the architecture layer indi-
cating that the performance consequences of the event have
been simulated within the architecture model. To give an ex-
ample, an SDF actor that embodies a write event will block
after firing until the write has been simulated at the archi-
tecture level. This token exchange mechanism yields a dy-
namic behavior. For this reason, the scheduling in Sesame
is semi-static rather than static.

In the Archer project [13], a bottom-up approach is fol-
lowed. A synthesis tool called Control Data Flow Graphs
(CDFG) [17] is taken as a basis. However, the CDFG nota-
tion is too complex for exploration, so they move to a higher
abstraction level called Symbolic Programs (SP). SPs are
CDFG-like representations of Kahn processes. They con-
tain control constructs like CDFGs, however unlike CD-
FGs, they are not directly executable. They need extra infor-
mation for execution which is supplied in terms of control
traces. These control traces (which are somewhat similar to
the traces we use) are generated by running the application
with a particular set of data. At the architecture layer, SPs
are executed with the control traces to generate architecture
traces which are subsequently used to drive the resources in
the architecture model.

Table 1. A comparison of different mapping strategies.

Comparison criteria TD ETD SP
Executable graphs no yes no
Contain control flow information no yes yes
Capture dependencies between events no yes yes
Allow complex event transformations no yes yes
Complexity of architecture models low low moderate
Simulation time low moderate moderate
Accuracy low high high

In Table 1, we give a comparison chart for the three
mapping strategies: TD, SP, and Enhanced Trace Driven
(ETD). From this table, the advantages of ETD over TD
should be clear as the former retains the application infor-
mation that has been lost in the TD approach. This means
that at the cost of a small increase of complexity at the map-
ping layer (and possibly a slight increase of simulation time)
we now have the capability of performing accurate simula-
tions as well as performing complex transformations (e.g.
refinement) on application events. Comparing ETD to the
SP approach, we see that they both allow for accurate simu-
lations. In the ETD approach, all the complexity is handled
at the mapping layer while in the SP approach it is spread
over the mapping layer and the architecture model layer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

while(1) {

read(in_NumOfBlocks,NumOfBlocks);

write(out_TablesInfo,LumTablesInfo);

write(out_TablesInfo,ChrTablesInfo);

switch(TablesChangeFlag) {

write(out_Command1,OldTables);

write(out_Command2,NewTables);

break;

case QandHuffTablesChanged:

case HuffTablesChanged:

// code omitted

write(out_HuffTables,LumHuffTables);

write(out_HuffTables,ChrHuffTables);

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

default:

write(out_Command1,OldTables);

write(out_Command2,OldTables);

break;

// code omitted

for(int i=1;i<(NumOfBlocks/2);i++) {

// code omitted

read(in_Statistics,Statistics);

execute("op_AccStatistics");

// code omitted

}

}

}

// code omitted

Fig. 3. Annotated C++ code for the Q-Control process.

The control traces and the SPs are created and manipulated
(e.g. transformed) at the mapping layer, while they are also
directed to the architecture layer to generate the architecture
traces that derive the architectural simulation. This mech-
anism results in having more complex architecture model
components in the SP approach which may hamper the ar-
chitectural exploration. We also observe another advantage
of the ETD approach over the SP approach that the graphs
in the former are inherently executable while in the latter
are not. This facilitates relatively easy construction of the
system simulation.

4. EXAMPLES & A SIMPLE EXPERIMENT

In this section, we illustrate how we build IDF graphs with
an example taken from an M-JPEG application we studied
in [1]. In Figure 3, we present the annotated C++ code for
the Q-Control Kahn process at the application layer. The
Q-Control process computes the tables for Huffman encod-
ing and those required for quantization for each frame in the
video stream, according to the information gathered about
the previous video frame. This operation of the Q-Control
process introduces data-dependent behavior into the M-JPEG
application. In Figure 4, a corresponding IDF graph is given
for realizing a high-level simulation. That is, the archi-
tecture-level operations embodied by the SDF actors (shown
with circles) represent read, execute and write operations
(shown as R, E, and W in Figure 4, respectively). These
SDF actors drive the architecture layer components by the
token exchange mechanism (explained in Section 3); how-
ever, for the sake of simplicity, the architecture layer and the
token exchange mechanism are not shown in the figure. The
IDF actors CASE-BEGIN, CASE-END, REPEAT-BEGIN,
and REPEAT-END model jump and repetition structures
present in the application code. The scheduler reads an
application trace, generated earlier by running the applica-
tion code with a particular set of data, and executes the IDF
graph by scheduling the IDF actors accordingly by sending
the appropriate control tokens. In Figure 4, there are hori-
zontal arcs shown with dotted lines between the SDF actors.



read(in_NumOfBlocks,NumOfBlocks)
write(out_TablesInfo,LuminanceTablesInfo)

..
Scheduler

write(out_TablesInfo,ChrominanceTablesInfo)

CASE−BEGIN

CASE−END

W WWWR R E

REPEAT−END

REPEAT−BEGIN

1 12 2

Fig. 4. IDF graph representing the Q-Control process from
Figure 3 that realizes high-level simulation at the architec-
ture layer.

Adding these arcs to the graph results in a sequential exe-
cution of architecture-level operations while removing them
exploits parallelism. This is a good example that shows the
flexibility of our mapping strategy.

In Figure 5, we present an IDF graph that implements
communication refinement [14] in which communication op-
erations, read and write, are refined in such a way that the
synchronization parts become explicit. As a consequence,
an application-level read operation is decomposed into three
architecture-level operations: check-data, load-data, signal-
room (shown as cd, ld, and sr in Figure 5, respectively),
and similarly, an application-level write operation is decom-
posed into three architecture-level operations: check-room,
store-data, signal-data (shown as cr, st, and sd in Figure 5,
respectively). The computational execute operations are not
refined, they are simply forwarded to the architecture model
layer. This type of refinement not only reveals the system-
bottlenecks due to synchronizations, but also makes it pos-
sible to correct them by reordering the refined operations
(e.g., early checking for data/room or merging multiple costly
synchronizations). In this case, SDF actors represent these
refined architecture-level operations. So, by simply replac-
ing the SDF actors with the refined ones in a plug-and-play
fashion, one can realize communication refinement (and pos-
sibly other transformations). Once again, the level of paral-
lelism between the architecture-level operations can be ad-
justed by adding or removing arcs between the SDF actors.

We have also performed a simple experiment in which
we explored how far the performance numbers of the TD
approach diverge from the numbers of the ETD approach.
The setup for the experiment is already given by Figure 1.
In this simple application, process A reads a block of data,
performs a computation on it, and writes a block of data
for process B. Simultaneously, process B reads a block of
data and performs a computation on it. In this experiment,

process A and process B are mapped onto Processor 1 and
Processor 2, respectively. Processor 1 reads its input data
from the dedicated FIFO while the communication between
the two processors is performed through the shared mem-
ory. We consider the following scenario: we assume that
Processor 1 has no local memory, thus before fetching data
from the FIFO it should first consult the memory whether
there is room for writing the results of the computation. This
behavior requires communication refinement in the sense
shown in Figure 5 which enables Processor 1 to perform
early check-room. We modeled this behavior using the ETD
approach and compared our performance results with the
numbers obtained by the TD approach.

write(out_TablesInfo,ChrominanceTablesInfo)
write(out_TablesInfo,LuminanceTablesInfo)
read(in_NumOfBlocks,NumOfBlocks)

..

cd

ld

sr

CASE−END

CASE−BEGIN

Scheduler

REPEAT−BEGIN

REPEAT−END

cd

ld E

sr

1st

1cr cr2

2st

sd2

cr1 cr2

st1 st2

sd1 sd21sd

Fig. 5. IDF graph for the process in Figure 3 implementing
communication refinement.

In Table 2, we present how much the numbers of the TD
approach deviate from the numbers of the ETD approach
which models the correct behavior. We should note that
we have performed 16 simulation runs using four different
speeds for the processors, � being the slowest and ��� being
the fastest. In Table 2, these processor speeds are abbrevi-
ated as ����� and �	��
 for Processor 1 and Processor 2, re-
spectively. From the simulation results we observe that the
performance numbers obtained by the TD approach deviate
between ��
������ and ����� ��� from the correct numbers.

Table 2. Experimental Results
Error Ratio Matrix for TD mapping approach
�	��� x �	��
 � ��� ��� ���

� ����� ��� ��
�� ��� ��������� ��
������
��� ����� ��� ��������� ����� ��� ���������
��� ����� ��� ����� ��� ��������� ���������
��� ����� 
�� �� �� ��� ����� 
�� �� ������



5. CONCLUSION & DISCUSSION

In this paper, we presented a new mapping strategy for ef-
ficient and accurate design space exploration of heteroge-
neous systems. To accomplish this, we followed a top-down
approach in which we took a relatively low accurate explo-
ration tool, in our case Sesame, and improved its map-
ping strategy with methodologies borrowed from a synthe-
sis tool. The synthesis method, in our case the IDF MoC,
has been proven to be very useful for exploration as well.
We showed this with examples, where in each case, easy
construction of IDF graphs was possible. With these exam-
ples, we showed how we can change the amount of possible
parallelism by simply adding or removing a few arcs, while
we also demonstrated how communication refinement can
be realized by only replacing the SDF actors. Performing a
simple experiment, we could also show how the new map-
ping approach improves the simulation accuracy.

Currently, we are experimenting with our new mapping
strategy on real-life media applications. To do so, we have
implemented the IDF and SDF actors as generic building
blocks in Pearl [2], which is a small but powerful object-
based simulation language that is also used for building ar-
chitecture models in Sesame. The fact that both our IDF
graphs and the architecture models are implemented in Pearl
simplifies their interaction (i.e., token exchange mechanism).
Concerning only the SDF actors, we have already performed
a simple case study in which we modeled and analyzed dif-
ferent communication behaviors at the architecture level.
We did this by simply changing the arcs between the SDF
actors while leaving the application model unchanged [14].

6. ACKNOWLEDGEMENTS

This research is performed within the Artemis project
funded by PROGRESS. The authors thank Ed Deprettere,
Pieter van der Wolf and Simon Polstra for good discussions.

7. REFERENCES

[1] A. D. Pimentel et al., “Towards efficient design
space exploration of heterogeneous embedded me-
dia systems,” in Embedded Processor Design Chal-
lenges: Systems, Architectures, Modeling, and Simu-
lation. Springer, 2002.

[2] J. E. Coffland and A. D. Pimentel, “A software frame-
work for efficient system-level performance evalua-
tion of embedded systems,” in Proc. of the ACM Sym-
posium on Applied Computing, March 2003.

[3] A. D. Pimentel et al., “Exploring embedded-systems
architectures with Artemis,” IEEE Computer, Nov.
2001.

[4] J. T. Buck, “Static scheduling and code generation
from dynamic dataflow graphs with integer valued
control streams,” in Proc. of the 28th Asilomar confer-
ence on Signals, Systems, and Computers, Oct. 1994.

[5] R. Esser et al., “Using an object-oriented petri net
tool for heterogeneous system design,” in Proc. of the
Algorithmen und Werkzeuge für Petrinetze, 1997.

[6] J. T. Buck et al., “Ptolemy: A framework for simu-
lating and prototyping heterogeneous systems,” Int.
Journal of Computer Simulation, Apr. 1994.

[7] E. A. Lee and T. M. Parks, “Dataflow process net-
works,” in Proc. of the IEEE, May 1995.

[8] G. Kahn, “The semantics of a simple language for
parallel programming,” in Proc. of the IFIP Congress
74, 1974.

[9] “Cadence Design Systems, http://www.cadence.com”.

[10] F. Balarin et al., Hardware-Software Co-design of Em-
bedded Systems – The POLIS approach, Kluwer Aca-
demic Publishers, 1997.

[11] S. Mohanty et al., “Rapid system-level performance
evaluation and optimization for application mapping
onto SoC architectures,” in Proc. of the IEEE
ASIC/SOC Conference, Sep. 2002.

[12] P. Lieverse et al., “A methodology for architecture
exploration of heterogeneous signal processing sys-
tems,” in Proc. of the IEEE Workshop on Signal Pro-
cessing Systems, Oct. 1999.

[13] V. Živković et al., “Design space exploration of
streaming multiprocessor architectures,” in Proc. of
the IEEE Workshop on Signal Processing Systems,
Oct. 2002.

[14] A. D. Pimentel and C. Erbas, “An IDF-based
trace transformation method for communication re-
finement,” in Proc. of the ACM/IEEE Design Automa-
tion Conference, June 2003.

[15] A. D. Pimentel et al., “On the modeling of intra-task
parallelism in task-level parallel embedded systems,”
To be published in Domain-Specific Processors: Sys-
tems, Architectures, Modeling, and Simulation, Mar-
cel Dekker, 2003.

[16] J. T. Buck, Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model, Ph.D.
thesis, Dept. of EECS, UC Berkeley, 1993.

[17] W. Wolf, Computers as Components – Principles of
Embedded Computing System Design, Morgan Kauf-
mann Publishers, 2001.


